
WFCatalog Web Service Specification

Version 0.22
15-11-2016

Authors
Luca Trani, Reinoud Sleeman, Mathijs Koymans and the EIDA team

Purpose

To specify a web service interface for the exchange of waveform metadata1, including QC. The
specification defines service name, query parameters and expected results. Also, it contains the
supported data quality metrics and their descriptions.

Service Characteristics

Versioning
The service is versioned according the following three digit (x.y.z) pattern:
SpecMajor.SpecMinor.Implementation

where the fields have the following meaning:

SpecMajor: The major specification version, all implementations sharing this SpecMajor
value will be backwards compatible with all prior releases. Values are integers starting at 1.

SpecMinor: The minor specification version, incremented when optional parameters or
behaviour is added to the previous specification but backwards compatibility is maintained with
the previous major versions, i.e. all 1.# service versions will be compatible with version 1.0.
Values are integers starting at 0.

Implementation: The implementation version, an integer identifier specific to the data
centre implementation. Useful to track service updates for bug fixes, etc. but with no implication
on conformance to the specification.

Together the SpecMajor and SpecMinor versions imply a minimum expected behaviour of a given
service. This versioning scheme allows clients to expect specific behaviour based on the
SpecMajor version, while allowing the extension of the service with optional parameters while
maintaining backwards compatibility. Each version number is service specific, there is no

1 See appendix II

implication that SpecMajor version numbers across services are related.

Calling pattern
The service will be invoked using a subset of REST and HTTP methods. In particular HTTP GET
and HTTP POST methods are supported.

Service path and port
The following base URI pattern is to be used at each data centre implementing the service:

<site>/<relativepath>/wfcatalog/<majorversion>/

 where majorversion is an integer value specifying the major specification version supported by the
service.
A site is the domain name of the data centre hosting the web service. For instance, the base URI for
version 1 of the service running at ORFEUS would be: www.orfeus-eu.org/ws/wfcatalog/1

The service should be available on TCP/IP port 80

Service methods
The service must support the following methods:

 query – to submit a data request
 version – to request the full service version (SpecMajor.SpecMinor.Implementation)
 application.wadl – to request a WADL for the interface

Minimum functionality
Implementations of this service interface should support all methods specified as required.
Additionally, interfaces should conform to the calling patterns and expected results identified in this
document to be considered conform with the specification. The service definition includes required
and optional parameters; an implementation must support the required parameters to be considered
conform. The optional parameters supported by any given implementation should be specified in
the WADL returned by the service.

Service responses

No data selected
If a properly formatted request is submitted but would result in no data being returned, the service
will return a HTTP status 204 (No Content).

Result set limitations
Limitations on the amount of information returned for any given request may be imposed
independently for the service by each data centre.
If a client submits a request that would result in a data set beyond the service limit the service
should return an HTTP status 413 (Request Entity Too Large)

Error messages
All errors reported to the client, either HTTP 4xx or 5xx status codes, should include an error

message transmitted as MIME type text/plain using the following pattern:
--
Error <CODE>: <SIMPLE ERROR DESCRIPTION>
<MORE DETAILED ERROR DESCRIPTION>
Usage details are available from <SERVICE DOCUMENTATION URI>
Request:
<SUBMITTED URL>
Request Submitted:
<UTC DATE TIME>
Service version:
<3-LEVEL VERSION>
--

WADL
The WADL documents returned by the service should follow these guidelines:

 All public parameters supported by an interface shall be documented in the WADL

 Parameters supported by the interface shall be documented using the long version of the
parameter name and not the abbreviated version.

 Parameters not included in the specification (data centre specific extensions) shall be
documented with a type and a short description

HTTP Status codes
The following table includes a list of common status codes returned by the web service.

Code Description

200 Successful request, results follow

204 Request was properly formatted and submitted but no data matches the selection

400 Bad request due to improper specification, unrecognised parameter, parameter value
out of range, etc.

413 Request would result in too much data being returned or the request itself is too
large. Returned error message should include the service limitations in the detailed
description. Service limits should be documented in the WADL

500 Internal server error

503 Service temporarily unavailable, used in maintenance mode

Table 1

Request Parameters
Table 2 describes the request parameters for the service

Parameter Type Support Description Default
net[work] string Required Select the network code. Supports lists [Any]

and wildcards[see next paragraph]
sta[tion] string Required Select the station code. Supports lists and

wildcards[see next paragraph]
[Any]

loc[ation] string Required Select the location identifier. Supports
lists and wildcards [see next paragraph]

[Any]

cha[nnel] string Required Select the channel code. Supports lists
and wildcards[see next paragraph]

[Any]

start[time] ISO 8601 Required Limit to results starting on or after the
specified start time2

[Any]

end[time] ISO 8601 Required Limit to results ending on or before the
specified end time3

[Any]

format string Optional Specifies the desired output format. Valid
values: json

json

include string Required Choose the level of detail of the results.
See section “Results level of detail” E.g:
include=sample or
include=all

default4

gran[ularity] string Required Define the level of granularity for metric
computation. Eg: day, hour, month.
Minimum supported granularity is day.

day

minimumlength /
minlen

float Optional Limit results to continuous data segments
of a minimum length specified in
seconds, and include information about
these segments

[Any]

longestonly boolean Optional Limit results to the longest continuous
segment per channel, and include
information about this segment

FALSE

csegments boolean Optional Include information about continuous
segments

FALSE

[metric_filter] Metric
dependent

Required Limit the results to streams that satisfy a
filter on a specific metric value.
[metric_filter] is a place-holder
applicable to any5 specific metric defined
in Table3. Multiple occurrences separated
by '&' can be specified.
See section “Metrics parameters
extensions” for a detailed explanation.
E.g.: sample_max=10 or
sample_max_lt=10&sample_max
_gt=3 or
sample_max=10&sample_mean=-
5

[Any]

Table 2

2 Rounded down to the previous granule
3 Rounded up to the next granule
4 See Table 3
5 Except: data_quality_flags, activity_flags, io_and_clock_flags

Wildcards and list in constraint parameters
Some constraint parameters, indicated in the Table 2, support the use of wildcards. Two types of
wildcards are defined:

* - Matches 0 to many characters
? - Matches any single character

Lists
Some constraints parameters, indicated in the Table 2, are allowed to hold multiple values comma
separated. E.g.:include=sample_stdev,sample_rms; or channel=BHZ,BHN,BHE

Time parameter
The starttime parameter should be interpreted as selecting any data or information at times on
or later than the value specified. Similarly, the endtime selects any data or information at times on
or prior to the value specified. The selection shall include any data intersecting with the specified
time range.

Waveform characteristics and metrics
The following entries, defined in Table 3, shall be available and supported by the service. For
detailed metrics definitions see Appendix I.

Name Description

Mseed header

quality* SEED quality indicator. E.g.: D, R, Q, M

sample_rate* List containing unique sample rates

record_length* List containing unique record lengths

encoding* List containing unique encodings

num_records* Number of records

Sample metrics

num_samples* Number of samples

sample_max Maximum value of all the samples

sample_min Minimum value of all the samples

sample_stdev Standard deviation of all the samples

sample_rms Root mean square value of all the samples

sample_mean Average value of all the samples

sample_median 50th percentile of all the samples

sample_lower_quartile 25th percentile of all the samples

sample_upper_quartile 75th percentile of all the samples

num_gaps* Total number of gaps

num_overlaps* Total number of overlaps

max_gap* Largest gap in seconds

max_overlap* Largest overlap in seconds

sum_gaps* Sum of all the gaps in seconds

sum_overlaps* Sum of all the overlaps in seconds

percent_availability* Percentage of available data

MSEED header metrics

timing_quality_mean Average of the timing quality percentage value

timing_quality_median 50th percentile of all timing quality percentage
value

timing_quality_lower_quartile 25th percentile of all timing quality percentage
value

timing_quality_upper_quartile 75th percentile of all timing quality percentage
value

timing_quality_max Maximum of all timing quality percentage value

timing_quality_min Minimum of all timing quality percentage value

timing_correction Percentage of data for which field 16 in the
record header is non-zero

data_quality_flags Data quality flags percentages. It works only
with include. E.g.:
include=data_quality_flags will
return all the percentages for each data quality
flag.

amplifier_saturation Percentage of data for which the bit 0 in the
Data Quality Flag byte is set to ‘1’

digitizer_clipping Percentage of data for which the bit 1 in the
Data Quality Flag byte is set to ‘1

spikes Percentage of data for which the bit 2 in the
Data Quality Flag byte is set to ‘1

glitches Percentage of data for which the bit 3 in the
Data Quality Flag byte is set to ‘1

missing_padded_data Percentage of data for which the bit 4 in the
Data Quality Flag byte is set to ‘1

telemetry_sync_error Percentage of data for which the bit 5 in the
Data Quality Flag byte is set to ‘1

digital_filter_charging Percentage of data for which the bit 6 in the
Data Quality Flag byte is set to ‘1

suspect_time_tag Percentage of data for which the bit 7 in the

Data Quality Flag byte is set to ‘1

activity_flags Activity flags percentages. It works only with
include. E.g.:
include=activity_flags will return all
the percentages for each activity flag.

calibration_signal Percentage of data for which the bit 0 in the
Activity Flag byte is set to ‘1

time_correction_applied Percentage of data for which the bit 1 in the
Activity Flag byte is set to ‘1

event_begin Percentage of data for which the bit 2 in the
Activity Flag byte is set to ‘1

event_end Percentage of data for which the bit 3 in the
Activity Flag byte is set to ‘1

positive_leap Percentage of data for which the bit 4 in the
Activity Flag byte is set to ‘1

negative_leap Percentage of data for which the bit 5 in the
Activity Flag byte is set to ‘1

event_in_progress Percentage of data for which the bit 6 in the
Activity Flag byte is set to ‘1

io_and_clock_flags I/O and clock flags percentages. It works only
with include. E.g.:
include=io_and_clock_flags will
return all the percentages for each I/O and Clock
flag.

station_volume Percentage of data for which the bit 0 in the I/O
and Clock Flag byte is set to ‘1

long_record_read Percentage of data for which the bit 1 in the I/O
and Clock Flag byte is set to ‘1

short_record_read Percentage of data for which the bit 2 in the I/O
and Clock Flag byte is set to ‘1

start_time_series Percentage of data for which the bit 3 in the I/O
and Clock Flag byte is set to ‘1

end_time_series Percentage of data for which the bit 4 in the I/O
and Clock Flag byte is set to ‘1

clock_locked Percentage of data for which the bit 5 in the I/O
and Clock Flag byte is set to ‘1

Table 3

* These are returned by default

Results level of detail

The service provides a number of metrics and characteristics by default.
Additional features can be requested using the parameter include.

Level name Description

default6 Includes all the default entries

sample Includes default + all sample metrics

header Includes default + all MSEED header metrics

all Includes all metrics

Metrics parameters extensions

The query URL could contain value=X to retrieve only metrics with that value, or value_gt=X
for metrics that exceed X.

The available extensions for parameter names are:

 _eq - Equal (the default if no extension is used).
 _ne - Not equal.
 _gt - Greater than.
 _ge - Greater than or equal.
 _lt - Less than.
 _le - Less than or equal.

This extension mechanism enables selection of parameters with values between an interval
specified by the user. E.g.: sample_max_ge=100&sample_max_le=500 would return all the
samples with max value belonging to [100,500].

Behaviour of the service

The version method shall return the implementation version as simple text string using the MIME

type text/plain.

The application.wadl method shall return a WADL conform description of the service using MIME
type application/xml.

The query method shall return the results fulfilling a user query in the proper format according to
the format parameter. The default MIME type is application/json.
The default format of the returned payload represents a waveform metadata object according to the
JSON schema provided in Appendix II.
Queries can be submitted using either HTTP GET or POST methods.

For the HTTP GET method, the parameters are specified as key=value separated by “&” and
may not be specified more than once.

For the HTTP POST method, the parameter must be submitted as part of a POST body. The

6 See Table 3

parameters network, station, location, channel, starttime, endtime may be
repeated as many times as necessary, all other parameters should be specified as key=value pairs
on separate lines following this pattern:

--
parameter1=value
parameter2=value
NET STA LOC CHA STARTTIME ENDTIME
NET STA LOC CHA STARTTIME ENDTIME
NET STA LOC CHA STARTTIME ENDTIME

All rules for parameters apply equally whether specified using GET or POST methods. However
when using POST no blank spaces are allowed as value, use “--” instead.

Examples

QUERY = www.orfeus-eu.org/ws/wfcatalog/1/query?network=NL&station=HGN&cha=BHZ&start=2001-
01-02&end=2001-01-03&csegments=true&include=all

[{
"miniseed_header_percentages": {

"data_quality_flags": {
"suspect_time_tag": 0,
"spikes": 0,
"amplifier_saturation": 0,
"glitches": 0,
"telemetry_sync_error": 0,
"missing_padded_data": 0,
"digital_filter_charging": 0,
"digitizer_clipping": 0

},
"activity_flags": {

"event_in_progress": 0,
"positive_leap": 0,
"negative_leap": 0,
"calibration_signal": 0,
"event_begin": 0,
"event_end": 0,
"time_correction_applied": 0

},
"io_and_clock_flags": {

"short_record_read": 0,
"station_volume": 0,
"long_record_read": 0,
"end_time_series": 0,
"start_time_series": 0,
"clock_locked": 0

},
"timing_correction": 0,
"timing_quality_mean": null,
"timing_quality_median": null,
"timing_quality_min": null,
"timing_quality_max": null,
"timing_quality_lower_quartile": null,
"timing_quality_upper_quartile": null

},
"sample_rms": 755.5320646257303,
"sample_rate": [40],
"waveform_format": "miniSEED",
"sum_overlaps": 0,
"quality": "D",
"num_overlaps": 0,
"sum_gaps": 79862.40000009537,
"num_gaps": 2,

 "num_records": 224,
"max_overlap": null,
"sample_stdev": 746.0162835391818,
"location": "",
"channel": "BHZ",
"encoding": ["STEIM1"],
"station": "HGN",
"num_samples": 261504,
"sample_upper_quartile": 576,
"record_len": [4096],
"sample_median": 90,
"start_time": "2001-01-02T00:00:00.000Z",
"percent_availability": 7.566666666556287,
"sample_lower_quartile": -355,
"network": "NL",
"end_time": "2001-01-03T00:00:00.000Z",
"waveform_type": "seismic",
"max_gap": 52214.40000009537,
"sample_mean": 119.53411802496329,
"sample_max": 3454,
"sample_min": -3641,
"version": "1.0.0",
"producer": {

"name": "Orfeus Data Center - KNMI/ODC",
"agent": "ObsPy",
"created": "2016-05-02T13:48:36.710Z"

},
"c_segments": [{

"sample_rms": 511.4226264414561,
"end_time": "2001-01-03T00:00:00.000Z",
"sample_rate": 40,
"num_samples": 70656,
"sample_upper_quartile": 241,
"start_time": "2001-01-02T23:30:33.600Z",
"sample_median": -73,
"segment_length": 1766.375,
"sample_lower_quartile": -394,
"sample_stdev": 505.67458796656433,
"sample_mean": -76.46119225543478

}, {
"sample_rms": 827.846074592661,
"end_time": "2001-01-02T09:00:19.200Z",
"sample_rate": 40,
"num_samples": 190848,
"sample_upper_quartile": 712,
"start_time": "2001-01-02T07:40:48.000Z",
"sample_median": 189,
"segment_length": 4771.175,
"sample_lower_quartile": -332,

"sample_stdev": 805.2504836461063,
"sample_mean": 192.0957620724346

}]
}]

QUERY = www.orfeus-eu.org/ws/wfcatalog/1/query?network=NL&station=HGN&cha=BHZ&start=2001-
01-02&end=2001-01-03&include=sample

[{
"sample_rms": 755.5320646257303,
"sample_rate": [40],
"waveform_format": "miniSEED",
"sum_overlaps": 0,
"quality": "D",
"num_overlaps": 0,
"sum_gaps": 79862.40000009537,
"num_gaps": 2,

 "num_records": 120,
"max_overlap": null,
"sample_stdev": 746.0162835391818,
"location": "",
"channel": "BHZ",
"encoding": ["STEIM1"],
"station": "HGN",
"num_samples": 261504,
"sample_upper_quartile": 576,
"record_len": [4096],
"sample_median": 90,
"start_time": "2001-01-02T00:00:00.000Z",
"percent_availability": 7.566666666556287,
"sample_lower_quartile": -355,
"network": "NL",
"end_time": "2001-01-03T00:00:00.000Z",
"max_gap": 52214.40000009537,
"sample_mean": 119.53411802496329,
"sample_max": 3454,
"sample_min": -3641,
"version": "1.0.0",
"producer": {

"name": "Orfeus Data Center - KNMI/ODC",
"agent": "ObsPy",
"created": "2016-05-02T13:50:24.966Z"

}
}]

QUERY = www.orfeus-eu.org/ws/wfcatalog/1/query?network=NL&station=HGN&cha=BHZ&start=2001-
01-02&end=2001-01-03&include=header

[{
"miniseed_header_percentages": {

"data_quality_flags": {
"suspect_time_tag": 0,
"spikes": 0,
"amplifier_saturation": 0,
"glitches": 0,
"telemetry_sync_error": 0,

"missing_padded_data": 0,
"digital_filter_charging": 0,
"digitizer_clipping": 0

},
"activity_flags": {

"event_in_progress": 0,
"positive_leap": 0,
"negative_leap": 0,
"calibration_signal": 0,
"event_begin": 0,
"event_end": 0,
"time_correction_applied": 0

},
"io_and_clock_flags": {

"short_record_read": 0,
"station_volume": 0,
"long_record_read": 0,
"end_time_series": 0,
"start_time_series": 0,
"clock_locked": 0

},
"timing_correction": 0,
"timing_quality_mean": null,
"timing_quality_median": null,
"timing_quality_min": null,
"timing_quality_max": null,
"timing_quality_lower_quartile": null,
"timing_quality_upper_quartile": null

},
"sample_rate": [40],
"waveform_format": "miniSEED",
"sum_overlaps": 0,
"quality": "D",
"num_overlaps": 0,

 "num_records": 120,
"sum_gaps": 79862.40000009537,
"num_gaps": 2,
"max_overlap": null,
"location": "",
"channel": "BHZ",
"encoding": ["STEIM1"],
"station": "HGN",
"num_samples": 261504,
"record_len": [4096],
"start_time": "2001-01-02T00:00:00.000Z",
"percent_availability": 7.566666666556287,
"network": "NL",
"end_time": "2001-01-03T00:00:00.000Z",
"max_gap": 52214.40000009537,
"version": "1.0.0",
"producer": {

"name": "Orfeus Data Center - KNMI/ODC",
"agent": "ObsPy",
"created": "2016-05-02T13:51:58.662Z"

}
}]

Appendix I: Quality metrics definition
The data quality metrics supported by this version of the WFCatalog API are compliant to the
proposal for standardisation for FDSN v2.0 by Reinoud Sleeman. The proposal is included below.

Proposal for FDSN standardization of waveform quality metrics

v2.0 - 21 October 2016

Knowledge of quality of seismic waveform data and related metadata is essential for any scientific
analysis and interpretation of the data. Automated processes to calculate data quality
parameters are required (a) to handle huge amounts of data, (b) to enable data centers to
automatically monitor changes or variations in data quality over different time scales and
(c) to provide services to the research community to search for and harvest the best
quality data based on these parameters.

Currently, parallel developments are on-going (e.g. IRIS DMC, ORFEUS EIDA) to calculate data
quality parameters and use these in different services. This document proposes the
standardization of a number of basic metrics of which most are common in both systems.

Quality parameters are calculated for a time windowed time series. In the following a time series is
considered to belong to a data stream uniquely identified by a SEED network code,
stations code, channel code, location code and data header/quality indicator (D|R|Q|M).

In this proposal two types of metrics are defined: those based on series of sample values and those
based on the SEED data record headers.

Waveform data archived in SEED files typically do not start and/or end at pre-defined, fixed times,
e.g. midnight or 00:00:00.0, and no standard exists within FDSN to do this. Therefore,
calculating sample value metrics in a file that loosely fits a pre-defined, fixed time
window does not yield appropriate results. The approach in this proposal therefore is to
define the sample value metrics in a defined time window of length 24 hours (starting at
00:00:00.0) independent of the archive structure. This proposal first provides the
definitions to relate the sample value metrics to the data, independent of the archive
format. Similarly, data records do not start or end exactly on pre-defined, fixed times. In
this proposal, header based metrics use the first record that (partially) fits the time
window and ignores the last record that (partially) fits the time window (see definitions
below).

Definitions

Data (dis)continuity, gap and overlap

A sample value at time t represents a continuous signal within time window [t, t+Δt), in which Δt is
the sample interval between two adjacent samples as defined by the sample rate factor

and the sample rate multiplier in the data record (header, fields 10 and 11) that contains
the sample at time t. When the actual sample rate in blockette 100 is available this value
should be used instead.

A continuous (discrete) time series is defined as a time series in which the time interval between
two adjacent samples (a) is constant (Δt) or (b) does not differ from this constant by more
than a certain time tolerance (ε). The tolerance value is defined here as 50% of the
sampling rate.

Continuity condition between two samples: Δt - ε <= t i+1 - t i <= Δt + ε.

A discontinuity thus occurs when (a) the time interval between two adjacent samples (with
corresponding times ti and ti+1) exceeds the sample rate interval (Δt) by more than the
(sampling rate dependent) time tolerance ε: |t i+1 –(ti + Δt) | > ε or (b) when the sampling
rate between 2 samples changes with respect to the previous 2 samples by more than the
tolerance value (50% of the sampling rate).

A gap is a positive valued discontinuity, an overlap is a negative valued discontinuity.

Gap condition: t i+1 - ti > Δt + ε with gap length: t i+1 - ti - Δt
Overlap condition: t i+1 - ti < Δt – ε with overlap length: ti + Δt - t i+1

Within a time window [T1, T2) a time series may have a start time t1 (defined by the first sample in
[T1, T2)) later than T1 or an end time tN (defined by the last sample) before T2. In cases
that T1 or T2 intercept a gap in the continuous (discrete) time series a start gap or end gap
is defined within [T1, T2). When the actual sample rate in blockette 100 is available in
time window [T1, T2) the mode of these values in these blockettes should be used as
sample rate Δt.

Start gap: t1 – T1 when t1 - T1 > 0 and t1 – tp > Δt + ε
End gap: T2 – (tN + Δt) when T2 – tN > Δt and tN+1 – tN > Δt + ε

Record start time, record end time and record length

Data in SEED format is stored in records. Each SEED record contains a continuous time series.
Gaps or overlaps in data may occur between records.

The start time Rs of a mini-SEED record is the time t1 of the first sample in the record (including
time correction if applicable).

The end time Re of a record is defined by the end of the time interval represented by the last sample
(N) in the record (including time correction if applicable): tN + Δt

The time interval of a record containing N samples is thus defined as: [Rs , Re) = [t1, tN + Δt).

The length of a record is Re – Rs = tN - t1 + Δt

Metrics calculation in time window

Two types of metrics are defined, one type based on samples/values, and one type based on mini-
SEED data record header.

Sample based metrics are calculated within a time window [T1, T2). Time T1 is included, time T2 is
excluded.

Samples at t=T1 are included in the sample based metrics calculations, samples at t=T2 are
excluded. In other words, all samples with time t for which T1  t < T2 are included.

Therefore:

Data records for which Re  T1 are not used in the sample based metrics calculations.

Data records for which Rs ≥ T2 are not used in the sample based metrics calculations.

Data records for which T1 < Re < T2 are (partially) used in the sample based metrics
calculations. In these records the samples are used with time t for which t ≥T1.

Data records for which T1 Rs < T2 are (partially) used in the sample based metrics
calculations. In these records the samples are used with time t for which t <T2 .

Record based metrics are calculated within a time window [T1, T2). Time T1 is included, time T2 is
excluded.

Data records for which Re  T1 are not used in the record based metrics calculations.

Data records for which Rs ≥ T2 are not used in the record based metrics calculations.

Metrics based on sample values

The following metrics are calculated from all sample values within time window [T1, T2).

 sample_mean

Average value of all samples (x1, .., xN).





N

i
ix

N
mean

1

1

 sample_max

Maximum value of all samples (x1, .., xN).

 sample_min

Minimum value of all samples (x1, .., xN).

 sample_median

Median value of all samples (x1, .., xN). The middle value of the sorted samples.
The 50-th percentile of all samples (x1, .., xN).

 sample_stdev

The standard deviation (or RMS variance) of all samples (x1, .., xN).







N

i

i

N

meanx
stdev

1

2)(

 percent_availability

Data availability is the percentage of data available in a time window [T 1, T2). It is the length of the
time window minus the sum of all gaps in this time window, relative to the length of the time
window [T1, T2).

12

12 _)(
100_

TT

gapssumTT
tyavailabilipercent






Metrics based on mini-SEED data record header

The following metrics are extracted from header flags in data records fitting time window [T1, T2).
A flag in the record header of a SEED record applies to all samples in the data record.

 amplifier_saturation

Number of records fitting time window [T1, T2) for which bit 0 in the Data Quality Flag byte is set
to '1'.

 digitizer_clipping

Number of records fitting time window [T1, T2) for which bit 1 in the Data Quality Flag byte is set
to '1'.

 spikes

Number of records fitting time window [T1, T2) for which bit 2 in the Data Quality Flag byte is set
to '1'.

 glitches

Number of records fitting time window [T1, T2) for which bit 3 in the Data Quality Flag byte is set
to '1'.

 missing_padded_data

Number of records fitting time window [T1, T2) for which bit 4 in the Data Quality Flag byte is set
to '1'.

 telemetry_sync_error

Number of records fitting time window [T1, T2) for which bit 5 in the Data Quality Flag byte is set
to '1'.

 digital_filter_charging

Number of records fitting time window [T1, T2) for which bit 6 in the Data Quality Flag byte is set
to '1'.

 suspect_time_tag

Number of records fitting time window [T1, T2) for which bit 7 in the Data Quality Flag byte is set
to '1'.

 calibration_signal

Number of records fitting time window [T1, T2) for which bit 0 in the Activity Flag byte is set to '1'.

 event_begin

Number of records fitting time window [T1, T2) for which bit 2 in the Activity Flag byte is set to '1'.

 event_end

Number of records fitting time window [T1, T2) for which bit 3 in the Activity Flag byte is set to '1'.

 event_in_progress

Number of records fitting time window [T1, T2) for which bit 6 in the Activity Flag byte is set to '1'.

 clock_locked

Number of records fitting time window [T1, T2) for which bit 5 in the I/O & Clock Flag byte is set
to '1'.

 timing_correction

Number of records fitting time window [T1, T2) for which field 16 (“Time correction”) in the record
header is non-zero.

 timing_quality

Average of the timing quality percentage value stored in miniSEED blockettes 1001. Value is
NULL if not present in the data records.

num_gaps

The number of gaps in time interval [T1, T2).

num_overlaps

The number of overlaps in time interval [T1, T2).

max_gap

Largest gap in seconds in time interval [T1, T2).

max_overlap

Largest overlap in seconds in time interval [T1, T2).

Appendix II: Waveform Metadata (WFMetadata) JSON Schema

{
"id": "wfmetadata-schema-uri",
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Waveform Metadata Json Schema",
"description": "This schema represents Waveform Metadata characterising traces

with their QC",
"type": "object",

"properties": {
"wfmetadata_id": {

"description": "Unique identifier of the metadata document. This can
be a DOI, a Handle or any other type of PID",

"$ref": "#/definitions/stringLiteral",
"format": "uri"

},
"producer": {

"description": "The producer of this document. For instance it can
be: a software, a person or an organization",

"type": "object",
"additionalProperties": {

"$ref": "#/definitions/agent"
}

},
"waveform_type": {

"description": "Describes the type of waveform. E.g.: seismic,
infrasound",

"$ref": "#/definitions/stringLiteral",
"additionalProperties": false

},
"waveform_format": {

"description": "Describes the waveform format. E.g.: miniSEED",
"type": {
 "enum":["miniSEED"]
},
"additionalProperties": false

},
"version": {

"description": "The version of the metadata document. E.g.: 1.0.0",
"type": {
"enum":["1.0.0"]
},
"additionalProperties": true

},
"start_time": {

"description": "Start time of the window used for metric computation
for this entry in UTC",

"$ref": "#/definitions/timeLiteral"
},
"end_time": {

"description": "End time of the window used for metric computation
for this entry in UTC",

"$ref": "#/definitions/timeLiteral"
},
"network": {

"description": "Network code",
"$ref": "#/definitions/stringLiteral",
"pattern": "[A-Z0-9]{1,6}"

},
"station": {

"description": "Station code",
"$ref": "#/definitions/stringLiteral",
"pattern": "[A-Z0-9]{1,5}"

},
"channel": {

"description": "Channel code",
"$ref": "#/definitions/stringLiteral",
"pattern": "[A-Z0-9]{3}"

},
"location": {

"description": "Location code",
"$ref": "#/definitions/stringLiteral",
"pattern": "[A-Z0-9]{0,2}"

},
"quality": {

"description": "SEED quality indicator. This is SEED format
specific",

"type": {
"enum": [

"D",
"R",
"Q",
"M"

]},
"additionalProperties": false

},
"sample_rate": {

"description": "Array of unique sample rates",
"type": "array",
"minItems": 1,
"items": {

"$ref": "#/definitions/positiveDouble"
},
"uniqueItems": true,
"additionalProperties": false

},
"num_samples": {

"description": "Number of data samples",
"$ref": "#/definitions/positiveInteger"

},
"encoding": {

"description": "Array of unique encodings. E.g.in SEED: int32, int64,
float32, float64, opaque (for log channels).",

"type": "array",
"minItems": 1,
"items": {

"$ref": "#/definitions/stringLiteral"
},

"uniqueItems": true,
"additionalProperties": false

},
"num_records": {

 "description": "Number of records. This is SEED format specific",
 "$ref": "#/definitions/positiveInteger"

},
"record_length": {

"description": "Array of unique record lengths. This is SEED format
specific",

"type": "array",
"minItems": 1,
"items": {

"$ref": "#/definitions/positiveInteger"
},
"uniqueItems": true,
"additionalProperties": false

},
"num_gaps": {

"description": "Number of data gaps",
"$ref": "#/definitions/positiveInteger"

},
"max_gap": {

"description": "Duration of the largest gap in seconds",
"$ref": "#/definitions/positiveDouble"

},
"num_overlaps": {

"description": "Number of data overlaps",
"$ref": "#/definitions/positiveInteger"

},
"max_overlap": {

"description": "Duration of the largest overlap in seconds",
"$ref": "#/definitions/positiveDouble"

},
"sum_gaps": {

"description": "Total duration of gaps in seconds",
"$ref": "#/definitions/positiveDouble"

},
"sum_overlaps": {

"description": "Total duration of overlaps in seconds",
"$ref": "#/definitions/positiveDouble"

},
"sample_max": {

"description": "Maximum sample value",
"$ref": "#/definitions/numberLiteral"

},
"sample_min": {

"description": "Minimum sample value",
"$ref": "#/definitions/numberLiteral"

},
"sample_mean": {

"description": "Mean of the sample values",
"$ref": "#/definitions/numberLiteral"

},
"sample_rms": {

"description": "Rms of the sample values",
"$ref": "#/definitions/positiveDouble"

},
"sample_lower_quartile": {

"description": "Lower quartile of the sample values",
"$ref": "#/definitions/numberLiteral"

},
"sample_upper_quartile": {

"description": "Upper quartile of the sample values",
"$ref": "#/definitions/numberLiteral"

},
"sample_median": {

"description": "50th percentile of the sample values",
"$ref": "#/definitions/numberLiteral"

},
"sample_stdev": {

"description": "Standard deviation of the sample values",
"$ref": "#/definitions/positiveDouble"

},
"miniseed_header_percentages": {

"type": "object",
"properties": {
"timing_correction": {

"description": "Percentage of data for which field 16 in the
record header is non-zero",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_mean": {

"description": "Mean of the timing quality percentage values
stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_min": {

"description": "Minimum of the timing quality percentage
values stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_max": {

"description": "Maximum of the timing quality percentage
values stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_median": {

"description": "The 50th percentile of all timing quality
percentage values stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_lower_quartile": {

"description": "The 25th percentile of all timing quality
percentage values stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},
"timing_quality_upper_quartile": {

"description": "The 75th percentile of all timing quality
percentage values stored in mSEED blockettes 1001",

"$ref": "#/definitions/numberLiteral"
},

"data_quality_flags": {
"type": "object",
"properties": {

"amplifier_saturation": {
"description": "Percentage of data for

which bit 0 in the DQ flag is set to 1",
"$ref": "#/definitions/positivePercentage"

},
"digitizer_clipping": {

"description": "Percentage of data for
which bit 1 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"spikes": {

"description": "Percentage of data for
which bit 2 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"glitches": {

"description": "Percentage of data for
which bit 3 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"missing_padded_data": {

"description": "Percentage of data for
which bit 4 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"telemetry_sync_error": {

"description": "Percentage of data for
which bit 5 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"digital_filter_charging": {

"description": "Percentage of data for
which bit 6 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"suspect_time_tag": {

"description": "Percentage of data for
which bit 7 in the DQ flag is set to 1",

"$ref": "#/definitions/positivePercentage"
}

},
"required":[

"amplifier_saturation",
"digitizer_clipping",
"spikes",
"glitches",
"missing_padded_data",
"telemetry_sync_error",
"digital_filter_charging",
"suspect_time_tag"
]

},
"activity_flags": {

"type": "object",
"properties": {

"calibration_signal": {
"description": "Percentage of data for

which bit 0 in the Activity flag is set to 1",
"$ref": "#/definitions/positivePercentage"

},
"time_correction_applied": {

"description": "Percentage of data for
which bit 1 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"event_begin": {

"description": "Percentage of data for
which bit 2 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"event_end": {

"description": "Percentage of data for
which bit 3 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"positive_leap": {

"description": "Percentage of data for
which bit 4 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"negative_leap": {

"description": "Percentage of data for
which bit 5 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"event_in_progress": {

"description": "Percentage of records for
which bit 6 in the Activity flag is set to 1",

"$ref": "#/definitions/positivePercentage"
}

},
"required":[

"calibration_signal",
"time_correction_applied",
"event_begin",
"event_end",
"positive_leap",
"negative_leap",
"event_in_progress"
]

},
"io_and_clock_flags": {

"type": "object",
"properties": {

"station_volume": {
"description": "Percentage of records for

which bit 0 in the I/O and Clock flag is set to 1",
"$ref": "#/definitions/positivePercentage"

},
"long_record_read": {

 "description": "Percentage of records for
which bit 1 in the I/O and Clock flag is set to 1",

 "$ref": "#/definitions/positivePercentage"

},
"short_record_read": {

"description": "Percentage of records for
which bit 2 in the I/O and Clock flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"start_time_series": {

"description": "Percentage of records for
which bit 3 in the I/O and Clock flag is set to 1",

 "$ref": "#/definitions/positivePercentage"
},
"end_time_series": {

"description": "Percentage of records for
which bit 4 in the I/O and Clock flag is set to 1",

"$ref": "#/definitions/positivePercentage"
},
"clock_locked": {

"description": "Percentage of records for
which bit 5 in the I/O & Clock flag is set to 1",

"$ref": "#/definitions/positivePercentage"
}

},
"required":[

"station_volume",
"long_record_read",
"short_record_read",
"start_time_series",
"end_time_series",
"clock_locked"
]

}
},
"required":[
 "timing_correction",
 "timing_quality_mean",
 "timing_quality_min",
 "timing_quality_max",
 "timing_quality_median",
 "timing_quality_lower_quartile",
 "timing_quality_upper_quartile",
 "data_quality_flags",
 "activity_flags",
 "io_and_clock_flags"
]

},
"percent_availability": {

"description": "Percentage of available data samples",
"$ref": "#/definitions/positiveDouble"

},

"c_segments": {
"description": "Continuous segments within the requested time

interval",
"type": "array",
"items": {

"type": "object",

"properties": {
 "sample_rate": {

"description": "Sample rate in the continuous
segment",

"$ref": "#/definitions/positiveDouble"
},

 "sample_min": {

"description": "Minimum of samples in a
continuous segment",

"$ref": "#/definitions/numberLiteral"
},
"sample_max": {

"description": "Maximum of samples in a
continuous segment",

"$ref": "#/definitions/numberLiteral"
},

 "sample_mean": {
"description": "Mean of the sample values in a

continuous segment",
"$ref": "#/definitions/numberLiteral"

},
"sample_rms": {

"description": "Rms of the sample values in a
continuous segment",

"$ref": "#/definitions/positiveDouble"
},
"sample_lower_quartile": {

"description": "Lower quartile of the sample
values in a continuous segment",

"$ref": "#/definitions/numberLiteral"
},
"sample_upper_quartile": {

"description": "Upper quartile of the sample
values in a continuous segment",

"$ref": "#/definitions/numberLiteral"
},
"sample_median": {

"description": "50th percentile of the sample
values in a continuous segment",

"$ref": "#/definitions/numberLiteral"
},
"start_time": {

"description": "Time of the first sample of the
segment in UTC",

"$ref": "#/definitions/timeLiteral"
},
"end_time": {

"description": "Time of the last sample of the
segment in UTC",

"$ref": "#/definitions/timeLiteral"
},
"num_samples": {

"description": "Number of data samples in the
continuous segment",

"$ref": "#/definitions/positiveInteger"
},
"sample_stdev": {

"description": "Standard deviation of samples in
the continuous segment",

"$ref": "#/definitions/positiveDouble"
},
"segment_length": {

"description": "Length in seconds of the specific
continuous segment",

"$ref": "#/definitions/numberLiteral"
}

},
"required":[
 "sample_rate",

"start_time",
"end_time",
"num_samples",
"segment_length"
]

}
}

},
"definitions": {

"agent": {
"$ref": "#/definitions/entity"

},
"typedLiteral": {

"type": "object",
"properties": {

"$": {
"type": "string"

},
"type": {

"type": "string",
"format": "uri"

},
"lang": {

"type": "string"
}

},
"required": ["$"],
"additionalProperties": false

},
"stringLiteral": {

"type": "string",
"additionalProperties": false

},
"numberLiteral": {

"oneOf":[
{"type": "number"},
{"type": "null"}
],
"additionalProperties": false

},
"booleanLiteral": {

"type": "boolean",
"additionalProperties": false

},
"timeLiteral": {

"type": "string",
"format": "date-time",
"additionalProperties": false

},
"literalArray": {

"type": "array",
"minItems": 1,
"items": {

"anyOf": [{
"$ref": "#/definitions/stringLiteral"

}, {
"$ref": "#/definitions/numberLiteral"

}, {
"$ref": "#/definitions/booleanLiteral"

}, {
"$ref": "#/definitions/typedLiteral"

}]
}

},
"attributeValues": {

"anyOf": [{
"$ref": "#/definitions/stringLiteral"

}, {
"$ref": "#/definitions/numberLiteral"

},
 {

"$ref": "#/definitions/timeLiteral"
},
{

"$ref": "#/definitions/booleanLiteral"
}, {

"$ref": "#/definitions/typedLiteral"
}, {

"$ref": "#/definitions/literalArray"
}]

},
"entity": {

"title": "entity",
"additionalProperties": {

"$ref": "#/definitions/attributeValues"
}

},
"positiveInteger": {

"oneOf":[
{"type": "integer",
"minimum": 0,
"exclusiveMinimum": false},
{"type": "null" }
],
"additionalProperties": false

},
"positiveDouble": {
"oneOf":[

{"type": "number",
"minimum": 0,
"exclusiveMinimum": false},
{"type": "null" }

],
"additionalProperties": false

},
"positivePercentage": {

"oneOf":[
{"type": "number",
"minimum": 0,
"maximum": 100,
"exclusiveMinimum": false,
"exclusiveMaximum": false},
{"type": "null" }
],
"additionalProperties": false

}
},
"required": [

"producer",
"version",
"waveform_format",
"start_time",
"end_time",
"network",
"station",
"channel",
"location",
"sample_rate",

 "max_gap",
"max_overlap",
"percent_availability",
"num_samples",
"num_gaps",
"num_overlaps",
"sum_gaps",
"sum_overlaps"

]
}

	v2.0 - 21 October 2016
	Knowledge of quality of seismic waveform data and related metadata is essential for any scientific analysis and interpretation of the data. Automated processes to calculate data quality parameters are required (a) to handle huge amounts of data, (b) to enable data centers to automatically monitor changes or variations in data quality over different time scales and (c) to provide services to the research community to search for and harvest the best quality data based on these parameters.
	Currently, parallel developments are on-going (e.g. IRIS DMC, ORFEUS EIDA) to calculate data quality parameters and use these in different services. This document proposes the standardization of a number of basic metrics of which most are common in both systems.
	Quality parameters are calculated for a time windowed time series. In the following a time series is considered to belong to a data stream uniquely identified by a SEED network code, stations code, channel code, location code and data header/quality indicator (D|R|Q|M).
	In this proposal two types of metrics are defined: those based on series of sample values and those based on the SEED data record headers.
	Waveform data archived in SEED files typically do not start and/or end at pre-defined, fixed times, e.g. midnight or 00:00:00.0, and no standard exists within FDSN to do this. Therefore, calculating sample value metrics in a file that loosely fits a pre-defined, fixed time window does not yield appropriate results. The approach in this proposal therefore is to define the sample value metrics in a defined time window of length 24 hours (starting at 00:00:00.0) independent of the archive structure. This proposal first provides the definitions to relate the sample value metrics to the data, independent of the archive format. Similarly, data records do not start or end exactly on pre-defined, fixed times. In this proposal, header based metrics use the first record that (partially) fits the time window and ignores the last record that (partially) fits the time window (see definitions below).
	Definitions
	Data (dis)continuity, gap and overlap
	A sample value at time t represents a continuous signal within time window [t, t+Δt), in which Δt is the sample interval between two adjacent samples as defined by the sample rate factor and the sample rate multiplier in the data record (header, fields 10 and 11) that contains the sample at time t. When the actual sample rate in blockette 100 is available this value should be used instead.
	A continuous (discrete) time series is defined as a time series in which the time interval between two adjacent samples (a) is constant (Δt) or (b) does not differ from this constant by more than a certain time tolerance (ε). The tolerance value is defined here as 50% of the sampling rate.
	Continuity condition between two samples: Δt - ε <= t i+1 - t i <= Δt + ε.
	A discontinuity thus occurs when (a) the time interval between two adjacent samples (with corresponding times ti and ti+1) exceeds the sample rate interval (Δt) by more than the (sampling rate dependent) time tolerance ε: |ti+1 –(ti + Δt) | > ε or (b) when the sampling rate between 2 samples changes with respect to the previous 2 samples by more than the tolerance value (50% of the sampling rate).
	A gap is a positive valued discontinuity, an overlap is a negative valued discontinuity.
	
	Within a time window [T1, T2) a time series may have a start time t1 (defined by the first sample in [T1, T2)) later than T1 or an end time tN (defined by the last sample) before T2. In cases that T1 or T2 intercept a gap in the continuous (discrete) time series a start gap or end gap is defined within [T1, T2). When the actual sample rate in blockette 100 is available in time window [T1, T2) the mode of these values in these blockettes should be used as sample rate Δt.
	
	Record start time, record end time and record length
	Data in SEED format is stored in records. Each SEED record contains a continuous time series. Gaps or overlaps in data may occur between records.
	The start time Rs of a mini-SEED record is the time t1 of the first sample in the record (including time correction if applicable).
	The end time Re of a record is defined by the end of the time interval represented by the last sample (N) in the record (including time correction if applicable): tN + Δt
	The time interval of a record containing N samples is thus defined as: [Rs , Re) = [t1, tN + Δt).
	The length of a record is Re – Rs = tN - t1 + Δt
	
	Metrics calculation in time window
	Two types of metrics are defined, one type based on samples/values, and one type based on mini-SEED data record header.
	Sample based metrics are calculated within a time window [T1, T2). Time T1 is included, time T2 is excluded.
	
	Samples at t=T1 are included in the sample based metrics calculations, samples at t=T2 are excluded. In other words, all samples with time t for which T1  t < T2 are included.
	Therefore:
	Data records for which Re  T1 are not used in the sample based metrics calculations.
	Data records for which Rs ≥ T2 are not used in the sample based metrics calculations.
	Data records for which T1 < Re < T2 are (partially) used in the sample based metrics calculations. In these records the samples are used with time t for which t ≥T1.
	Data records for which T1 Rs < T2 are (partially) used in the sample based metrics calculations. In these records the samples are used with time t for which t <T2 .
	
	Record based metrics are calculated within a time window [T1, T2). Time T1 is included, time T2 is excluded.
	Data records for which Re  T1 are not used in the record based metrics calculations.
	Data records for which Rs ≥ T2 are not used in the record based metrics calculations.
	Metrics based on sample values
	The following metrics are calculated from all sample values within time window [T1, T2).
	sample_mean
	sample_median
	sample_stdev
	The standard deviation (or RMS variance) of all samples (x1, .., xN).
	Metrics based on mini-SEED data record header
	The following metrics are extracted from header flags in data records fitting time window [T1, T2). A flag in the record header of a SEED record applies to all samples in the data record.
	amplifier_saturation
	Number of records fitting time window [T1, T2) for which bit 0 in the Data Quality Flag byte is set to '1'.
	digitizer_clipping
	Number of records fitting time window [T1, T2) for which bit 1 in the Data Quality Flag byte is set to '1'.
	spikes
	Number of records fitting time window [T1, T2) for which bit 2 in the Data Quality Flag byte is set to '1'.
	glitches
	Number of records fitting time window [T1, T2) for which bit 3 in the Data Quality Flag byte is set to '1'.
	missing_padded_data
	Number of records fitting time window [T1, T2) for which bit 4 in the Data Quality Flag byte is set to '1'.
	telemetry_sync_error
	Number of records fitting time window [T1, T2) for which bit 5 in the Data Quality Flag byte is set to '1'.
	digital_filter_charging
	Number of records fitting time window [T1, T2) for which bit 6 in the Data Quality Flag byte is set to '1'.
	suspect_time_tag
	Number of records fitting time window [T1, T2) for which bit 7 in the Data Quality Flag byte is set to '1'.
	calibration_signal
	Number of records fitting time window [T1, T2) for which bit 0 in the Activity Flag byte is set to '1'.
	event_begin
	Number of records fitting time window [T1, T2) for which bit 2 in the Activity Flag byte is set to '1'.
	event_end
	Number of records fitting time window [T1, T2) for which bit 3 in the Activity Flag byte is set to '1'.
	event_in_progress
	Number of records fitting time window [T1, T2) for which bit 6 in the Activity Flag byte is set to '1'.
	clock_locked
	Number of records fitting time window [T1, T2) for which bit 5 in the I/O & Clock Flag byte is set to '1'.
	timing_correction
	Number of records fitting time window [T1, T2) for which field 16 (“Time correction”) in the record header is non-zero.
	timing_quality
	num_gaps
	The number of gaps in time interval [T1, T2).
	num_overlaps
	The number of overlaps in time interval [T1, T2).

